

A Faster Exponential Time Algorithm for

Bin Packing with Constant Number of Bins

with the Help of Additive Combinatorics

Jesper Nederlof

UU

Jakub Pawlewicz

Warsaw

Céline Swennenhuis

TU/e

Karol Węgrzycki

Saarbrücken

Bin Packing

Given:

- *n* items
- w(j) weight of item j

$$ightharpoonup w(X) = \sum_{j \in X} w(j)$$

m bins with capacity c

Goal: distribute items over bins

Bin Packing

$$\alpha(w) = |\{w(X): X \subseteq [n]\}|$$

$$\mathcal{B}(w) = \{X: w(X) = s\}$$

o Algorithm A

- Dynamic Programming
- $O(c^m \cdot n \cdot m)$

Algorithm B

- Björklund, Husfeldt and Koivisto (SICOMP 2009)
- $O(2^n \cdot n)$

Key idea:

Algorithm A in $O((1.999)^n)$ time

If $\alpha(w)$ is small

or

Algorithm B in $O((1.999)^n)$ time

If $\mathcal{B}(w)$ is small

Open Question

Can do in $O(1.99999^n)$ time?

Before our work, only known for m = 2,3 (Lente et al.)

Our result:

Can do in $O((2 - \varepsilon_m)^n)$ time with $\varepsilon_m > 0$ that depends on m.

Parameters $\alpha(w)$ and $|\mathcal{B}(w)|$

$\mathbf{w}_1, \dots, \mathbf{w}_5$	Histogram	$\alpha(w)$	$\max \mathcal{B}(w) $
00000	40 30 - 20 - 10 -	1	32
124816	0.5 - 0 5 10 15 20 25 30	32	1
12345	3 2 1 0 0 5 10 15	16	3

$$\alpha(w) = |\{w(X): X \subseteq [n]\}|$$

$$\mathcal{B}(w) = \{X: w(X) = s\}$$

```
If \alpha(w) \le 1.99^{n/m}
Algorithm A runs in time O(1.999^n)
```

If $|\mathcal{B}(w)| \leq 1.99^n$, Algorithm B runs in time $O(1.999^n)$

$\alpha(w) = |\{w(X): X \subseteq [n]\}|$ $\mathcal{B}(w) = \{X: w(X) = s\}$

Additive Combinatorics

$$\alpha(w) = |\{w(X): X \subseteq [n]\}|$$

$$\mathcal{B}(w) = \{X: w(X) = s\}$$

If $\alpha(w) \le 1.99^{n/m}$ Algorithm A runs in time $O(1.999^n)$

If $|\mathcal{B}(w)| \leq 1.99^n$, Algorithm B runs in time $O(1.999^n)$

Theorem: For all $\delta > 0$ there exists $\varepsilon > 0$ s.t.

if
$$|\mathcal{B}(w)| \ge 2^{(1-\varepsilon)n}$$
, then $\alpha(w) \le 2^{\delta n}$.

Take
$$\delta < \frac{1}{m}$$

How to prove this?

Def: Uniquely Decodable Pairs (UDCP's)

A UDCP is a pair $\mathcal{A}, \mathcal{B} \subseteq \{0,1\}^n$ s.t. $|\mathcal{A} + \mathcal{B}| = |\mathcal{A}||\mathcal{B}|$.

 $\mathcal{A} + \mathcal{B}$: = {a + b: $a \in \mathcal{A}, b \in \mathcal{B}$ } a + b is addition over \mathbb{Z}^n .

Def: Uniquely Decodable Pairs (UDCP's)

A UDCP is a pair $\mathcal{A}, \mathcal{B} \subseteq \{0,1\}^n$ s.t. $|\mathcal{A} + \mathcal{B}| = |\mathcal{A}||\mathcal{B}|$.

 $\mathcal{A} + \mathcal{B}$: = {a + b: $a \in \mathcal{A}, b \in \mathcal{B}$ } a + b is addition over \mathbb{Z}^n .

Example 1:

$$A = \{000, 100\}$$
 $B = \{000, 001, 010, 011\}$ $A + B = \{000, 001, 010, \dots\}$

Example 2:

$$A = \{10,01\}$$
 $B = \{00,01,11\}$
 $A + B = \{10,11,21,01,02,12\}$

$$\alpha(w) = |\{w(X): X \subseteq [n]\}|$$

$$\mathcal{B}(w) = \{X: w(X) = s\}$$

Def: Uniquely Decodable Pairs (UDCP's)

A UDCP is a pair $\mathcal{A}, \mathcal{B} \subseteq \{0,1\}^n$ s.t. $|\mathcal{A} + \mathcal{B}| = |\mathcal{A}||\mathcal{B}|$.

- $\mathcal{A} \subseteq \{0,1\}^n$ s.t. all $a \in \mathcal{A}$ have different weight
- $\mathcal{B} \subseteq \{0,1\}^n$ s.t. all $b \in \mathcal{B}$ have weight s

\mathcal{A} and \mathcal{B} is UDCP:

Let *c* be received.

$$c = a + b$$
, so $\langle w, c \rangle = \langle w, a \rangle + \langle w, b \rangle$.

 $\Rightarrow a$ was used!

$$b = c - a$$
.

$$\begin{aligned} |\mathcal{A}| &= \alpha(w) \\ |\mathcal{B}| &= |\mathcal{B}(w)| \end{aligned}$$

See
$$w$$
 as a vector,

$$w(1) \ 0$$

$$w(2) \ 1$$

$$w(3), 0$$

$$\vdots \ \vdots$$

$$w(n) \ 1$$

Def: Uniquely Decodable Pairs (UDCP's)

A UDCP is a pair $\mathcal{A}, \mathcal{B} \subseteq \{0,1\}^n$ s.t. $|\mathcal{A} + \mathcal{B}| = |\mathcal{A}||\mathcal{B}|$.

Observation: If $\mathcal{A}, \mathcal{B} \subseteq \{0,1\}^n$ is UDCP, $|\mathcal{A}| \cdot |\mathcal{B}| \leq 3^n$.

Because: $\mathcal{A} + \mathcal{B} \subseteq \{0,1,2\}^n$

Corollary:
$$|\mathcal{A}| = \frac{|\mathcal{A} + \mathcal{B}|}{|\mathcal{B}|} \le \frac{3^n}{|\mathcal{B}|}$$

Def: Uniquely Decodable Pairs (UDCP's)

A UDCP is a pair $\mathcal{A}, \mathcal{B} \subseteq \{0,1\}^n$ s.t. $|\mathcal{A} + \mathcal{B}| = |\mathcal{A}||\mathcal{B}|$.

Best known bounds: *If* \mathcal{A} , \mathcal{B} *is UDCP:*

$$|\mathcal{A}| \cdot |\mathcal{B}| \le 2^{1.5 \, n},$$

[Tilborg, 1978]

If
$$|\mathcal{A}| \geq 2^{(1-\varepsilon)n}$$
 then $|\mathcal{B}| \leq 2^{(0.4228+\sqrt{\varepsilon})n}$.

[Austrin et al. 2018]

We need: If $|\mathcal{B}| \geq 2^{(1-\varepsilon)n}$, then $|\mathcal{A}| \leq 2^{\delta n}$.

$\alpha(w) = |\{w(X): X \subseteq [n]\}|$ $\mathcal{B}(w) = \{X: w(X) = s\}$

Additive Combinatorics

Def: Uniquely Decodable Pairs (UDCP's)

A UDCP is a pair $\mathcal{A}, \mathcal{B} \subseteq \{0,1\}^n$ s.t. $|\mathcal{A} + \mathcal{B}| = |\mathcal{A}||\mathcal{B}|$.

- $\longrightarrow \mathcal{A} \subseteq \{0,1\}^n$ s.t. all $\alpha \in \mathcal{A}$ have different weight
- $\mathcal{B} \subseteq \{0,1\}^n$ s.t. all $b \in \mathcal{B}$ have weight s
 - \mathcal{A} and \mathcal{B} is UDCP.

 $|\mathcal{B}| = |\mathcal{B}(w)|$

 $k \cdot s$

 $k \cdot \mathcal{B} = \{b_1 + \dots + b_k : b_i \in \mathcal{B}\}$ $\langle w, b \rangle = k \cdot s$ for all $b \in k \cdot \mathcal{B}$. \mathcal{A} and $k \cdot \mathcal{B}$ is `UDCP'!

Proof:

Let c be received.

$$c = a + b$$
, so $\langle w, c \rangle = \langle w, a \rangle + \frac{\langle w, b \rangle}{\langle w, b \rangle}$.

 $\Rightarrow a$ was used!

$$b = c - a$$
.

$$\alpha(w) = |\{w(X): X \subseteq [n]\}|$$

$$\mathcal{B}(w) = \{X: w(X) = s\}$$

 $|\mathcal{A}| = \alpha(w)$

 $|\mathcal{B}| = |\mathcal{B}(w)|$

Def: Uniquely Decodable Pairs (UDCP's)

A UDCP is a pair $\mathcal{A}, \mathcal{B} \subseteq \{0,1\}^n$ s.t. $|\mathcal{A} + \mathcal{B}| = |\mathcal{A}||\mathcal{B}|$.

- $\stackrel{\frown}{\longrightarrow} \mathcal{A} \subseteq \{0,1\}^n \text{ s.t.}$ all $\stackrel{\frown}{\alpha} \in \mathcal{A}$ have different weight
- $\mathcal{B} \subseteq \{0,1\}^n$ s.t. all $b \in \mathcal{B}$ have weight s
 - \mathcal{A} and \mathcal{B} is UDCP.
- $k \cdot \mathcal{B} = \{b_1 + \dots + b_k : b_i \in \mathcal{B}\}$ $\langle w, b \rangle = k \cdot s$ for all $b \in k \cdot \mathcal{B}$. \mathcal{A} and $k \cdot \mathcal{B}$ is `UDCP'!

Assume $\mathcal{B} \approx \{0,1\}^n$

$$|\mathcal{A}| = \frac{|\mathcal{A} + k \cdot \mathcal{B}|}{|k \cdot \mathcal{B}|} \approx \leq \frac{(k+2)^n}{(k+1)^n} = \left(1 + \frac{1}{k+1}\right)^n = 2^{\delta_k n}$$

 $\approx \{0,\dots,k\}^n$

Conclusion

Main result:

Bin Packing in $O((2-\varepsilon_m)^n)$ time with $\varepsilon_m > 0$ that depends on m.

Key idea:

New result in Littlewood-Offord theory.

Thanks for your attention!

Future Research:

Bin Packing in $O(1.9999^n)$, m not a constant!

