A Faster Exponential Time Algorithm for

Bin Packing with Constant Number of Bins

with the Help of Additive Combinatorics

UU

Jakub Pawlewicz

Warsaw

Céline Swennenhuis

Karol Węgrzycki

Saarbrücken

Bin Packing

5	5 $\boxed{2}$ 3 3 1	4

Given:

- n items
- $w(j)$ weight of item j

$>w(X)=\sum_{j \in X} w(j)$
- m bins with capacity c

Goal: distribute items over bins

\square
\square

8

8

Bin Packing

$$
\begin{gathered}
\alpha(w)=|\{w(X): X \subseteq[n]\}| \\
\mathcal{B}(w)=\{X: w(X)=s\}
\end{gathered}
$$

- Algorithm A
- Dynamic Programming
- $O\left(c^{m} \cdot n \cdot m\right)$

Key idea:

Algorithm A in $O\left((1.999)^{n}\right)$ time If $\alpha(w)$ is small
or

- Algorithm B
- Björklund, Husfeldt and Koivisto (SICOMP 2009) If $\mathcal{B}(w)$ is small
- $O\left(2^{n} \cdot n\right)$

Algorithm B in $O\left((1.999)^{n}\right)$ time

Our result:

(1)pern Puastion

Can do in $O\left(1.99999^{n}\right)$ time?

> Before our work, only known for $m=2,3$
(Lente et al.)

Parameters $\alpha(w)$ and $|\mathcal{B}(w)|$

$$
\begin{gathered}
\alpha(w)=|\{w(X): X \subseteq[n]\}| \\
\mathcal{B}(w)=\{X: w(X)=s\}
\end{gathered}
$$

$\mathrm{w}_{1}, \ldots, w_{5}$	Histogram		$\alpha(w)$	$\max \|\mathcal{B}(w)\|$
00000			1	32
124816			32	1
12345			16	3

Additive Combinatorics

$$
\begin{gathered}
\alpha(w)=|\{w(X): X \subseteq[n]\}| \\
\mathcal{B}(w)=\{X: w(X)=s\}
\end{gathered}
$$

If $\alpha(w) \leq 1.99^{n / m}$
Algorithm A runs in time $O\left(1.999^{n}\right)$

$$
\text { If }|\mathcal{B}(w)| \leq 1.99^{n} \text {, }
$$

Algorithm B runs in time

$$
O\left(1.999^{n}\right)
$$

Additive Combinatorics

$$
\begin{gathered}
\alpha(w)=|\{w(X): X \subseteq[n]\}| \\
\mathcal{B}(w)=\{X: w(X)=s\}
\end{gathered}
$$

Additive Combinatorics

$$
\begin{gathered}
\alpha(w)=|\{w(X): X \subseteq[n]\}| \\
\mathcal{B}(w)=\{X: w(X)=s\}
\end{gathered}
$$

If $\alpha(w) \leq 1.99^{n / m}$
Algorithm A runs in time

$$
O\left(1.999^{n}\right)
$$

$$
\text { If }|\mathcal{B}(w)| \leq 1.99^{n} \text {, }
$$

Algorithm B runs in time

$$
O\left(1.999^{n}\right)
$$

Theorem: For all $\delta>0$ there exists $\varepsilon>0$ s.t.

$$
\text { if }|\mathcal{B}(w)| \geq 2^{(1-\varepsilon) n} \text {, then } \alpha(w) \leq 2^{\delta n}
$$

Take $\delta<\frac{1}{m}$

Additive Combinatorics

Defz Uniciuchy Deaocable Pairs (viDCHEs)

 A UDCP is a pair $\mathcal{A}, \mathcal{B} \subseteq\{0,1\}^{n}$ s.t. $|\mathcal{A}+\mathcal{B}|=|\mathcal{A}||\mathcal{B}|$.

Additive Combinatorics

Defi Uniciuely Decodable Pairs (uDCP's) A UDCP is a pair $\mathcal{A}, \mathcal{B} \subseteq\{0,1\}^{n}$ s.t. $|\mathcal{A}+\mathcal{B}|=|\mathcal{A}||\mathcal{B}|$.

Example 1:

$$
\mathcal{A}+\mathcal{B}:=\{\mathrm{a}+\mathrm{b}: a \in \mathcal{A}, b \in \mathcal{B}\}
$$

${ }^{\circ} \mathcal{A}=\{000,100\} \quad \mathcal{B}=\{000,001,010,011\}$

$$
\text { - } \mathcal{A}+\mathcal{B}=\{000,001,010, \ldots\}
$$

Example 2:

$$
\mathcal{A}=\{10,01\} \quad \mathcal{B}=\{00,01,11\}
$$

Additive Combinatorics

$$
\begin{gathered}
\alpha(w)=|\{w(X): X \subseteq[n]\}| \\
\mathcal{B}(w)=\{X: w(X)=s\}
\end{gathered}
$$

Deff Unicuehy Decodable Pairys (UlDCPs)

A UDCP is a pair $\mathcal{A}, \mathcal{B} \subseteq\{0,1\}^{n}$ s.t. $|\mathcal{A}+\mathcal{B}|=|\mathcal{A}||\mathcal{B}|$.
$\mathcal{A} \subseteq\{0,1\}^{n}$ s.t. \quad all $a \in \mathcal{A}$ have different weight
$\mathcal{B} \subseteq\{0,1\}^{n}$ s.t. \quad all $b \in \mathcal{B}$ have weight \boldsymbol{s}

$$
\begin{aligned}
& |\mathcal{A}|=\alpha(w) \\
& |\mathcal{B}|=|\mathcal{B}(w)|
\end{aligned}
$$

\mathcal{A} and \mathcal{B} is UDCP:
Let c be received.
$c=a+b$, so $\langle w, c\rangle=\langle w, a\rangle+\langle w, b\rangle$
$\Rightarrow a$ was used!
$b=c-a$.

$$
\begin{gathered}
\text { See } w \text { as a vector, } \\
w(X)=\langle w, X\rangle=\left|\begin{array}{cc}
w(1) & 0 \\
w(2) & 1 \\
w(3) & 0 \\
\vdots & \vdots \\
w(n) & 1
\end{array}\right|
\end{gathered}
$$

Additive Combinatorics

> Deff Uniquely Decodable Pairs (UDCP ${ }_{\mathbf{S}}$) A UDCP is a pair $\mathcal{A}, \mathcal{B} \subseteq\{0,1\}^{n}$ s.t. $|\mathcal{A}+\mathcal{B}|=|\mathcal{A}||\mathcal{B}|$.

$$
\text { Observation: } \mid f \mathcal{A}, \mathcal{B} \subseteq\{0,1\}^{n} \text { is } U D C P,|\mathcal{A}| \cdot|\mathcal{B}| \leq 3^{n} .
$$

$$
\text { Because: } \mathcal{A}+\mathcal{B} \subseteq\{0,1,2\}^{n}
$$

Corollary: $|\mathcal{A}|=\frac{|\mathcal{A}+\mathcal{B}|}{|\mathcal{B}|} \leq \frac{3^{n}}{|\mathcal{B}|}$

Additive Combinatorics

Deff Unicmety Decoctable Pairs (uncips) A UDCP is a pair $\mathcal{A}, \mathcal{B} \subseteq\{0,1\}^{n}$ s.t. $|\mathcal{A}+\mathcal{B}|=|\mathcal{A}||\mathcal{B}|$.

Best known bounds: If \mathcal{A}, \mathcal{B} is UDCP:
$|\mathcal{A}| \cdot|\mathcal{B}| \leq 2^{1.5 n}$,
If $|\mathcal{A}| \geq 2^{(1-\varepsilon) n}$ then $|\mathcal{B}| \leq 2^{(0.4228+\sqrt{\varepsilon}) n}$.

We need: If $|\mathcal{B}| \geq 2^{(1-\varepsilon) n}$, then $|\mathcal{A}| \leq 2^{\delta n}$.

Additive Combinatorics

$$
\begin{gathered}
\alpha(w)=|\{w(X): X \subseteq[n]\}| \\
\mathcal{B}(w)=\{X: w(X)=s\}
\end{gathered}
$$

Deff Unichehy Deoodable Pairs (UnCPMs)

A UDCP is a pair $\mathcal{A}, \mathcal{B} \subseteq\{0,1\}^{n}$ s.t. $|\mathcal{A}+\mathcal{B}|=|\mathcal{A}||\mathcal{B}|$.
$\mathcal{A} \subseteq\{0,1\}^{n}$ s.t. \quad all $a \in \mathcal{A}$ have different weight

$$
\begin{aligned}
& |\mathcal{A}|=\alpha(w) \\
& |\mathcal{B}|=|\mathcal{B}(w)|
\end{aligned}
$$

\mathcal{A} and \mathcal{B} is UDCP.

- $k \cdot \mathcal{B}=\left\{b_{1}+\cdots+b_{k}: b_{i} \in \mathcal{B}\right\}$

Proof:
$\langle w, b\rangle=k \cdot s \quad$ for all $b \in k \cdot \mathcal{B}$.
\mathcal{A} and $k \cdot \mathcal{B}$ is 'UDCP'!
Let c be received. $\boldsymbol{k} \cdot \boldsymbol{s}$
$c=a+b$, so $\langle w, c\rangle=\langle w, a\rangle+\frac{w, b\rangle}{w,}$.
$\Rightarrow a$ was used!
$b=c-a$.

Additive Combinatorics

$$
\begin{gathered}
\alpha(w)=|\{w(X): X \subseteq[n]\}| \\
\mathcal{B}(w)=\{X: w(X)=s\}
\end{gathered}
$$

Deff Unichehy Decodable Pairs (UnCPMs)
 A UDCP is a pair $\mathcal{A}, \mathcal{B} \subseteq\{0,1\}^{n}$ s.t. $|\mathcal{A}+\mathcal{B}|=|\mathcal{A}||\mathcal{B}|$.

$\mathcal{A} \subseteq\{0,1\}^{n}$ s.t. \quad all $a \in \mathcal{A}$ have different weight
$|\mathcal{A}|=\alpha(w)$
$\mathcal{B} \subseteq\{0,1\}^{n}$ s.t. \quad all $b \in \mathcal{B}$ have weight \boldsymbol{s} \mathcal{A} and \mathcal{B} is UDCP.
$k \cdot \mathcal{B}=\left\{b_{1}+\cdots+b_{k}: b_{i} \in \mathcal{B}\right\}$

$$
|\mathcal{A}|=\frac{|\mathcal{A}+k \cdot \mathcal{B}|}{|k \cdot \mathcal{B}|} \approx \leq \frac{(k+2)^{n}}{(k+1)^{n}}=\left(1+\frac{1}{k+1}\right)^{n}=2^{\delta_{k} n}
$$

$\langle w, b\rangle=k \cdot s \quad$ for all $b \in k \cdot \mathcal{B}$. \mathcal{A} and $k \cdot \mathcal{B}$ is 'UDCP'!

$$
\text { Assume } \mathcal{B} \approx\{0,1\}^{n}
$$

Conclusion

Main result:

Bin Packing in $O\left(\left(2-\varepsilon_{m}\right)^{n}\right)$ time with $\varepsilon_{m}>0$ that depends on m.

Rey idea:

New result in Littlewood-Offord theory.

Future Research:

Bin Packing in $O\left(1.9999^{n}\right)$, m not a constant!

