

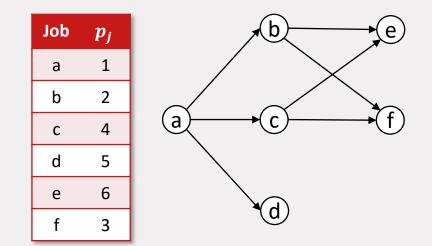
On the Fine-grained Parameterized Complixity of Partial Scheduling

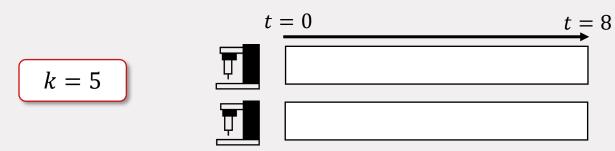
Céline Swennenhuis & Jesper Nederlof

Department of Mathematics and Computer Science, Eindhoven University of Technology

Problem Definition

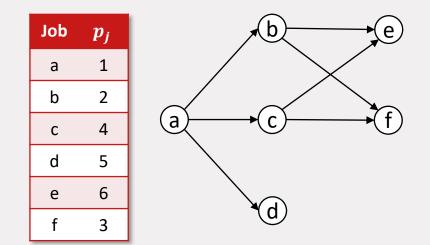
- Number of machines
- Processing times for *n* jobs
- Precedence Graph G
- *k* = minimal number of jobs to schedule
- Makespan / Universal Deadline D





Problem Definition

- Number of machines
- Processing times for *n* jobs
- Precedence Graph G
- *k* = minimal number of jobs to schedule
- Makespan / Universal Deadline D



$$k = 5$$

$$t = 0$$

$$t = 8$$

$$t = 0$$

$$t = 8$$

$$f$$

$$d$$

Motivation

More jobs available than we want to process

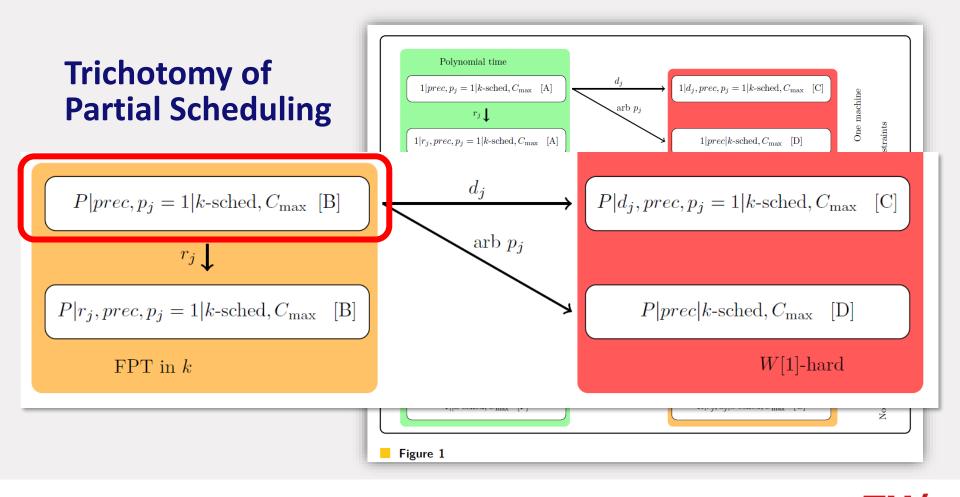
- Close-horizon approach
- Other jobs can be outsourced

Parameterized Complexity

If k = n, i.e. we want to schedule all jobs, the problem is NP-hard*.

Can we do better if k is small?

*Except for some special cases

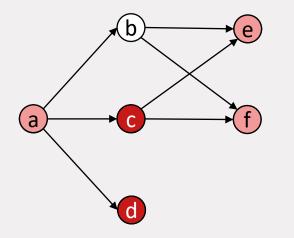


Today:

Theorem: The problem $P|prec, p_j = 1|k - sched, C_{max}$ is fixed-parameter tractable (FPT) in k.

To do so, we will give an algorithm which runs in time $O(8^k \cdot poly(n))$.

Definitions



Precendence Constraints Graph G

Notice:

• *G* is acyclic

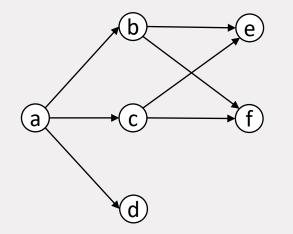
•
$$i < j$$
 if $i \rightarrow j$

Def: Let *A* be a set of jobs. pred(*A*) = { $x \mid \exists a \in A \text{ s. t. } x \leq a$ } comp(*A*) = { $x \mid \exists a \in A \text{ s. t. } x \leq a \text{ or } x \geq a$ }

Let $A = \{c, d\}$, then:

- $pred(A) = \{a, c, d\}$
- $comp(A) = \{a, c, d, e, f\}$

Definitions



Precendence Constraints Graph G

Def: An *antichain* is a set *A* whose elements are pairwise incomparable.

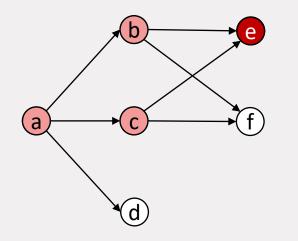
Ex. of antichains in G $\checkmark \{b, c, d\}$ $\checkmark \{b, c\}$ $\checkmark \{d, f\}$

Corresponding pred(A) $\Rightarrow \{a, b, c, d\}$ $\Rightarrow \{a, b, c\}$ $\Rightarrow \{a, b, c, d, f\}$

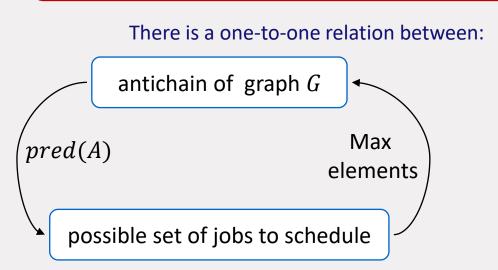
No antichain: $\times \{b, f\}$ $\times \{a, e\}$

Definitions

Def: An *antichain* is a set *A* whose elements are pairwise incomparable.



Precendence Constraints Graph G



Dynamic Program

S(A,t) = -	(true,	if <i>pred</i> (<i>A</i>) can be done before or at <i>t</i> , else
	(false,	else

If S(A, D) = true, for some A with $|pred(A)| \ge k$, then return YES.

For t = 0

$$S(A,0) = \begin{cases} true, & \text{if } A = \emptyset, \\ false, & \text{else} \end{cases}$$

Dynamic Program

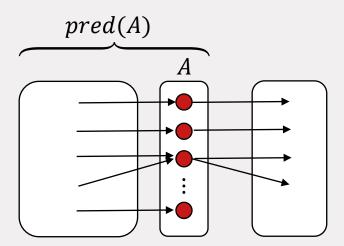
 $S(A,t) = \begin{cases} true, & \text{if } pred(A) \text{ can be done before or at } t, \\ false, & \text{else} \end{cases}$

Only $a \in A$ can be processed at time t. So, $\binom{|A|}{m} \leq 2^{|A|}$ possibilities.

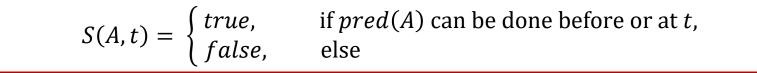
For each possibility:

Process subset at timeslot [t - 1, t].

Check if leftover jobs can be finished at t - 1. i.e. Check whether S(A', t - 1) = true



Dynamic Program

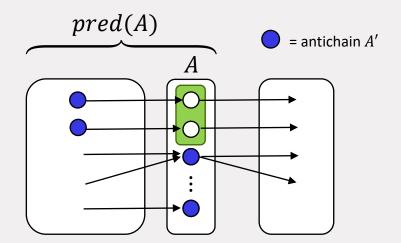


Only $a \in A$ can be processed at time t. So, $\binom{|A|}{m} \leq 2^{|A|}$ possibilities.

For each possibility:

Process subset at timeslot [t - 1, t].

Check if leftover jobs can be finished at t - 1. i.e. Check whether S(A', t - 1) = true



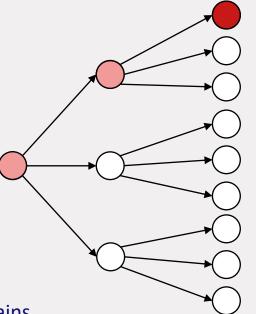
Runtime Analysis

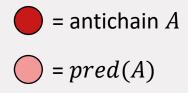
- Amount of S(A, t) to compute:
 - \succ $t \leq k$,
 - ▶ Number of antichains A s.t. $|pred(A)| \le k \le {n \choose k} \le n^k$,
- Computing S(A, t): Trying all possible subsets of A at [t 1, t]

▶ Assuming $|A| \le k$, at most 2^k possibilities

Number of Antichains (Example)

Let k = 3

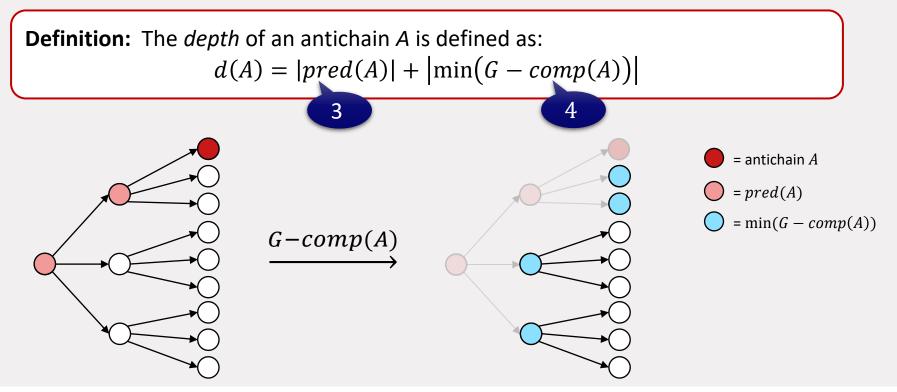




So at least k^{k-1} possible antichains

15 Fine-grained Parameterized Complexity of Partial Scheduling

Definition of depth



Definition of depth

Definition: The *depth* of an antichain A is defined as:

$$d(A) = |pred(A)| + |\min(G - comp(A))|$$

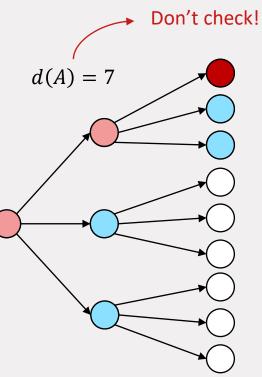
<u>Idea:</u>

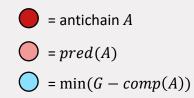
Only check antichains with $d(A) \leq k$.

Theorem: There are at most 4^k antichains with depth $d(A) \le k$.

Is that enough?

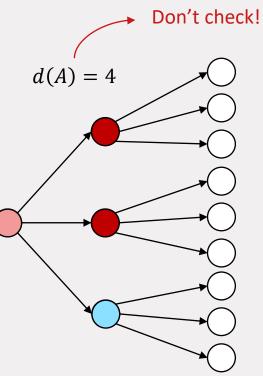
Let k = 3

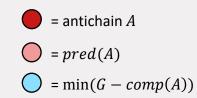




TU/e

Let k = 3





TU/e

Let k = 3

Check! d(A) = 1

 $= \operatorname{antichain} A$ $= \operatorname{pred}(A)$ $= \min(G - \operatorname{comp}(A))$

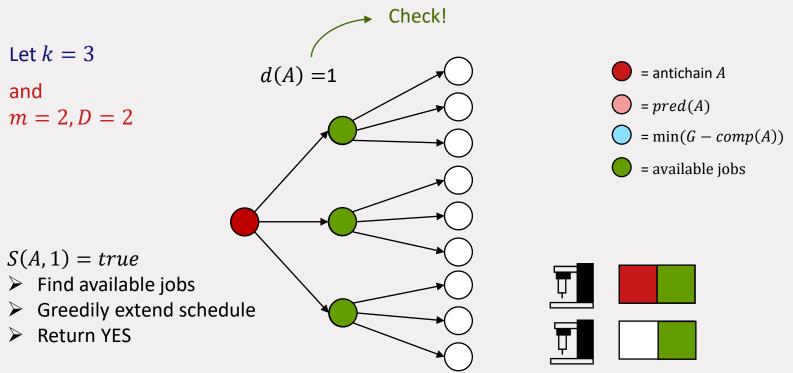
TU/e

Extending the Dynamic Program

Each time S(A, t) = true, ask:

Can we extend the given schedule to k jobs before deadline D?

Greedily schedule available jobs between t and D.



Runtime Analysis

- Amount of S(A, t) to compute:
 - \succ $t \leq k$,
 - #{antichains A s.t. |pred(A)| ≤ k} ≤ $\binom{n}{k}$ ≤ n^k, #{antichains A s.t. d(A) ≤ k} ≤ 4^k
- Computing S(A, t): Trying all possible subsets of A at [t 1, t]
 - ▶ Assuming $|A| \le k$, at most 2^k possibilities
 - Expanding schedule in polynomial time

So runtime of $O(8^k \cdot poly(n))$.

Summary / Open problems

- Partial Scheduling with parameter k
- Trichotomy of the parameterized complexity
- $P|prec, p_j = 1|k sched, C_{max}$
 - Dynamic Program
 - Depth of an antichain
 - Runtime of $O(8^k \cdot poly(n))$

Open problem

• Can we improve this bound?

Theorem: There are at most 4^k antichains with depth $d(A) \le k$.