Problem Definition

- Number of machines
- Processing times for \(n \) jobs
- Precedence Graph \(G \)
- \(k = \) minimal number of jobs to schedule
- Makespan / Universal Deadline \(D \)

<table>
<thead>
<tr>
<th>Job</th>
<th>(p_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
</tr>
<tr>
<td>c</td>
<td>4</td>
</tr>
<tr>
<td>d</td>
<td>5</td>
</tr>
<tr>
<td>e</td>
<td>6</td>
</tr>
<tr>
<td>f</td>
<td>3</td>
</tr>
</tbody>
</table>

\[k = 5 \]
Problem Definition

- Number of machines
- Processing times for n jobs
- Precedence Graph G
- $k = \text{minimal number of jobs to schedule}$
- Makespan / Universal Deadline D

Parameterized Complexity of Partial Scheduling

$$t = 0$$

Jobs

<table>
<thead>
<tr>
<th>Job</th>
<th>p_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
</tr>
<tr>
<td>c</td>
<td>4</td>
</tr>
<tr>
<td>d</td>
<td>5</td>
</tr>
<tr>
<td>e</td>
<td>6</td>
</tr>
<tr>
<td>f</td>
<td>3</td>
</tr>
</tbody>
</table>

Diagram:

- $t = 8$
- $k = 5$

Timeline:

- $t = 0$
- $t = 8$

- Jobs: a, c, f
- Jobs: b, d

Diagram:

- Graph G with nodes a, b, c, d, e, f
- Edges: a → b, b → c, c → d, d → e, e → f
Motivation

More jobs available than we want to process

- Close-horizon approach
- Other jobs can be outsourced
Parameterized Complexity

If $k = n$, i.e. we want to schedule all jobs, the problem is NP-hard*.

Can we do better if k is small?

Definition: A problem is called *fixed-parameter tractable (FPT) in k* if it can be solved in time $O(f(k) \cdot n^c)$, where n is the size of the input.

It is possible to prove a problem to be $W[1]$-hard \Rightarrow no such algorithm exists under ETH.

Except for some special cases
Trichotomy of Partial Scheduling

\[P|prec, p_j = 1|k\text{-sched}, C_{\text{max}} \]
\[P|r_j, prec, p_j = 1|k\text{-sched}, C_{\text{max}} \]
\[P|d_j, prec, p_j = 1|k\text{-sched}, C_{\text{max}} \]
\[P|d_j, prec|k\text{-sched}, C_{\text{max}} \]

- FPT in \(k \)
- \(W[1] \)-hard

Parameterized Complexity of Partial Scheduling
Today:

Theorem: The problem $P|prec, p_j = 1|k - sched, C_{\text{max}}$ is fixed-parameter tractable (FPT) in k.

To do so, we will give an algorithm which runs in time $O(8^k \cdot poly(n))$.
Definitions

Notice:
• G is acyclic
• $i < j$ if $i \rightarrow j$

Def: Let A be a set of jobs.
\[\text{pred}(A) = \{x \mid \exists a \in A \text{ s.t. } x \leq a\} \]
\[\text{comp}(A) = \{x \mid \exists a \in A \text{ s.t. } x \leq a \text{ or } x \geq a\} \]

Let $A = \{c, d\}$, then:
• $\text{pred}(A) = \{a, c, d\}$
• $\text{comp}(A) = \{a, c, d, e, f\}$

Precendence Constraints Graph G
Definitions

Def: An *antichain* is a set A whose elements are pairwise incomparable.

Ex. of antichains in G

- ✓ $\{b, c, d\}$
- ✓ $\{b, c\}$
- ✓ $\{d, f\}$

Corresponding $\text{pred}(A)$

- $\Rightarrow \{a, b, c, d\}$
- $\Rightarrow \{a, b, c\}$
- $\Rightarrow \{a, b, c, d, f\}$

No antichain:

- × $\{b, f\}$
- × $\{a, e\}$

Precendence Constraints Graph G
Definitions

Def: An *antichain* is a set A whose elements are pairwise incomparable.

There is a one-to-one relation between:

- antichain of graph G
- $\text{pred}(A)$
- possible set of jobs to schedule

Precendence Constraints Graph G
Dynamic Program

\[S(A, t) = \begin{cases}
 \text{true}, & \text{if } \text{pred}(A) \text{ can be done before or at } t, \\
 \text{false}, & \text{else}
\end{cases} \]

If \(S(A, D) = \text{true} \), for some \(A \) with \(|\text{pred}(A)| \geq k \), then return YES.

For \(t = 0 \)

\[S(A, 0) = \begin{cases}
 \text{true}, & \text{if } A = \emptyset, \\
 \text{false}, & \text{else}
\end{cases} \]
Dynamic Program

\[S(A, t) = \begin{cases}
 \text{true}, & \text{if } \text{pred}(A) \text{ can be done before or at } t, \\
 \text{false}, & \text{else}
\end{cases} \]

Only \(a \in A \) can be processed at time \(t \).

So, \(\binom{|A|}{m} \leq 2^{|A|} \) possibilities.

For each possibility:

Process subset at timeslot \([t - 1, t]\).

Check if leftover jobs can be finished at \(t - 1 \).

i.e. Check whether \(S(A', t - 1) = \text{true} \)
Dynamic Program

\[S(A, t) = \begin{cases}
 \text{true}, & \text{if } \text{pred}(A) \text{ can be done before or at } t, \\
 \text{false}, & \text{else}
\end{cases} \]

Only \(a \in A \) can be processed at time \(t \).

So, \(\binom{|A|}{m} \leq 2^{|A|} \) possibilities.

For each possibility:

Process subset at timeslot \([t - 1, t]\).

Check if leftover jobs can be finished at \(t - 1 \).

i.e. Check whether \(S(A', t - 1) = \text{true} \)
Runtime Analysis

• Amount of $S(A, t)$ to compute:
 - $t \leq k$,
 - Number of antichains A s.t. $|\text{pred}(A)| \leq k \leq \binom{n}{k} \leq n^k$,

• Computing $S(A, t)$: Trying all possible subsets of A at $[t - 1, t]$
 - Assuming $|A| \leq k$, at most 2^k possibilities
Number of Antichains (Example)

Let $k = 3$

So at least k^{k-1} possible antichains
Definition of depth

Definition: The depth of an antichain A is defined as:

$$d(A) = |\text{pred}(A)| + |\min(G - \text{comp}(A))|$$

- $\text{pred}(A)$ represents the predecessors of A.
- $G - \text{comp}(A)$ represents the graph G minus its complement.
- $\text{min}(G - \text{comp}(A))$ represents the minimum value in the graph G minus its complement.

Diagram:
- Red nodes represent the antichain A.
- Pink nodes represent $\text{pred}(A)$.
- Blue nodes represent $\min(G - \text{comp}(A))$.
- The transformation from the left graph to the right graph illustrates the computation of $G - \text{comp}(A)$.
Definition of depth

Definition: The *depth* of an antichain A is defined as:

$$d(A) = |pred(A)| + |\min(G - comp(A))|$$

Idea:

Only check antichains with $d(A) \leq k$.

Theorem: There are at most 4^k antichains with depth $d(A) \leq k$.

Is that enough?
Restricting Depth

Let $k = 3$

$\text{antichain } A$

$\text{pred}(A)$

$\text{min}(G - \text{comp}(A))$

$\quad d(A) = 7$

Don’t check!
Restricting Depth

Let $k = 3$

$\text{Let } k = 3$

Don’t check!

$d(A) = 4$

Don’t check!

- $\text{red} = \text{antichain } A$
- $\text{pink} = \text{pred}(A)$
- $\text{blue} = \text{min}(G - \text{comp}(A))$

Parameterized Complexity of Partial Scheduling
Restricting Depth

Let $k = 3$

$d(A) = 1$

- Red = antichain A
- Pink = $\text{pred}(A)$
- Blue = $\min(G - \text{comp}(A))$
Extending the Dynamic Program

Each time $S(A, t) = true$, ask:

Can we extend the given schedule to k jobs before deadline D?

Greedily schedule available jobs between t and D.
Restricting Depth

Let $k = 3$
and $m = 2, D = 2$

$S(A, 1) = true$

➢ Find available jobs
➢ Greedily extend schedule
➢ Return YES
Runtime Analysis

- Amount of $S(A, t)$ to compute:
 - $t \leq k$,
 - $\#\{\text{antichains } A \text{ s.t. } |\text{pred}(A)| \leq k\} \leq \binom{n}{k} \leq n^k$,
 - $\#\{\text{antichains } A \text{ s.t. } d(A) \leq k\} \leq 4^k$

- Computing $S(A, t)$: Trying all possible subsets of A at $[t - 1, t]$
 - Assuming $|A| \leq k$, at most 2^k possibilities
 - Expanding schedule in polynomial time

So runtime of $O(8^k \cdot \text{poly}(n))$.
Summary / Open problems

• Partial Scheduling with parameter k
• Trichotomy of the parameterized complexity
• $P|prec, p_j = 1|k – sched, C_{max}$
 • Dynamic Program
 • Depth of an antichain
 • Runtime of $O(8^k \cdot poly(n))$

Open problem

• Can we improve this bound?

Theorem: There are at most 4^k antichains with depth $d(A) \leq k$.