Parallel Machine Scheduling
with a Single Resource per Job

T. Janssen1 C. Swennenhuis2 A. Bitar3 T. Bosman4
S. Dauzère-Pérès5 D. Gijswijt1 L. van Iersel1 C. Yugma5

1Delft Institute of Applied Mathematics, Delft University of Technology
2Department of Mathematics and Computer Science, Eindhoven University of Technology
3Decision Brain, Montpelleir
4Department of Econometrics and Operations Research, Vrije Universiteit Amsterdam
5Department of Manufacturing Sciences and Logistics, Center of Microelectronics in Provence

MAPSP, June 2019
Motivation: Semi-conductor Industry
Motivation: Semi-conductor Industry
Motivation: Semi-conductor Industry
Table of Contents

1. Problem Definition
2. SPT-available Rule
3. Ordered Resources Property
4. Practical Solution
5. Future Work
Table of Contents

1. Problem Definition
2. SPT-available Rule
3. Ordered Resources Property
4. Practical Solution
5. Future Work
Problem Definition

Céline Swennenhuis (TU/e)

Single Resource Scheduling

MAPSP 2019
Problem Definition

\[
\sum_{j} C_j = 20 \\
\sum_{j} C_j = 22
\]
Problem Definition

\[\sum_j C_j = 20 \]

\[\sum_j C_j = 22 \]
Problem Definition

\[\sum_j C_j = 22 \]

\[\sum_j C_j = 20 \]
Problem Definition

- **Input:**
 - m machines
 - n jobs with processing times p_j
 - k resources
 - jobs are partitioned into which resource they use

- **Schedule feasible**
 - When each resource is used at most once at a time

- **Objective:**
 - Minimize $\sum_j C_j$

We denote\(^1\) this problem by:

$$P|\text{partition}| \sum_j C_j$$

\(^1\)Using the notation of [Graham et al., 1979]
The complexity of $P|\text{partition}| \sum_j C_j$ remains open.
Table of Contents

1. Problem Definition

2. SPT-available Rule

3. Ordered Resources Property

4. Practical Solution

5. Future Work
SPT-available Rule

Definition (Shortest Processing Time Rule, SPT)
The next job to be scheduled is the job with the shortest processing time.

SPT is exact for $P||\sum_j C_j$ [Smith, 1956]. However, how to deal with the resources?
SPT-available Rule

Definition (Shortest Processing Time Rule, SPT)
The next job to be scheduled is the job with the shortest processing time.

SPT is exact for $P|| \sum_j C_j$ [Smith, 1956]. However, how to deal with the resources?

Definition (SPT-available Rule)
The next job to be scheduled is the job with the shortest processing time. If its resources is not available, schedule it at the earliest opportunity.
SPT-available Rule

\[\sum_{j} C_j = 20 \]
\[\sum_{j} C_j = 22 \]

Céline Swennenhuis (TU/e)
Single Resource Scheduling
MAPSP 2019
SPT-available Rule

\[
\sum_{j} C_j = 20 \\
\sum_{j} C_j = 22
\]
SPT-available Rule

\[\sum_j C_j = 22 \]

\[\sum_j C_j = 20 \]
Theorem 2

The SPT-available rule gives a \((2 - \frac{1}{m})\)-approximation for \(P|\text{partition}|\sum_j C_j\).
The SPT-available rule gives a \((2 - \frac{1}{m})\)-approximation for \(P|\text{partition}|\sum_j C_j\). This bound is not tight. We can construct instances where it gives an \(\alpha\)-approximation for \(\alpha < \frac{4}{3}\).
Table of Contents

1. Problem Definition
2. SPT-available Rule
3. Ordered Resources Property
4. Practical Solution
5. Future Work
Ordered Resources Property

Theorem 1

In any optimal schedule for $P|\text{partition}|\sum_j C_j$, all jobs sharing the same resource are processed in order of non-decreasing processing times.
Ordered Resources Property

Theorem 1

In any optimal schedule for \(P|partition| \sum_j C_j \), all jobs sharing the same resource are processed in order of non-decreasing processing times.

Outline of proof:
Theorem 1

In any optimal schedule for $P|\text{partition}|\sum_j C_j$, all jobs sharing the same resource are processed in order of non-decreasing processing times.

Outline of proof:

\[P|\text{partition}|\sum_j C_j \xrightarrow{\text{allow preemptions}} P|\text{partition,prmp}|\sum_j C_j \]
Theorem 1

In any optimal schedule for \(P|\text{partition}| \sum_j C_j \), all jobs sharing the same resource are processed in order of non-decreasing processing times.

Outline of proof:

\[P|\text{partition}| \sum_j C_j \rightarrow \text{allow preemptions} \rightarrow P|\text{partition,prmp}| \sum_j C_j \rightarrow \text{By Lemma 1} \rightarrow P|\text{partition,prmp}| \sum_j C_j \text{ has sorted resources} \]
Theorem 1

In any optimal schedule for $P|\text{partition}|\sum_j C_j$, all jobs sharing the same resource are processed in order of non-decreasing processing times.

Outline of proof:

1. $P|\text{partition}|\sum_j C_j$
 allow preemptions
 $P|\text{partition,prmp}|\sum_j C_j$

2. By Lemma 1

3. $P|\text{partition,prmp}|\sum_j C_j$
 has sorted resources
Lemma 1

In any optimal schedule for $P|\text{partition, prmp}|\sum_j C_j$, all jobs sharing the same resource must be processed in order of non-decreasing processing times.
Ordered Resources Property

Lemma 1

In any optimal schedule for $P|\text{partition}, \text{prmp} | \sum_j C_j$, all jobs sharing the same resource must be processed in order of non-decreasing processing times.
Ordered Resources Property

Lemma 1

In any optimal schedule for $P|\text{partition}, \text{prmp} | \sum j C_j$, all jobs sharing the same resource must be processed in order of non-decreasing processing times.
Lemma 1

In any optimal schedule for $P|\text{partition}, \text{prmp}| \sum_j C_j$, all jobs sharing the same resource must be processed in order of non-decreasing processing times.
Lemma 1

In any optimal schedule for $P|partition, prmp| \sum_j C_j$, all jobs sharing the same resource must be processed in order of non-decreasing processing times.
Ordered Resources Property

Theorem 1

In any optimal schedule for $P|\text{partition}|\sum_j C_j$, all jobs sharing the same resource are processed in order of non-decreasing processing times.

Outline of proof:

$P|\text{partition}|\sum_j C_j \xrightarrow{\text{allow preemptions}} P|\text{partition,prmp}|\sum_j C_j$

By Lemma 1

$P|\text{partition,prmp}|\sum_j C_j$ has sorted resources
Ordered Resources Property

Theorem 1

In any optimal schedule for $P|\text{partition}|\sum_j C_j$, all jobs sharing the same resource are processed in order of non-decreasing processing times.

Outline of proof:

1. $P|\text{partition}|\sum_j C_j$
 - allow preemptions
2. $P|\text{partition,prmp}|\sum_j C_j$
 - By Lemma 1
3. $P|\text{partition}|\sum_j C_j$
 - has sorted resources
 - remove preemptions
4. $P|\text{partition,prmp}|\sum_j C_j$
 - has sorted resources
1 Problem Definition

2 SPT-available Rule

3 Ordered Resources Property

4 Practical Solution

5 Future Work
In practice, machines are not identical (but unrelated). We proved this problem to be NP-hard.

- In practice, every resource (reticle) is used at most 30 times a month
 - Solve easier problem without resources
 - Make schedule feasible
- Results:
 - Gives 6.02% reduction in total completion time
 - Gives 1.97% reduction in machine usage
Table of Contents

1. Problem Definition
2. SPT-available Rule
3. Ordered Resources Property
4. Practical Solution
5. Future Work
Future Work

- Establish the complexity of $P|\text{partition}|\sum_j C_j$
- Establish worst-case approximation ratio for SPT-available rule.
- Is $P|\text{partition}|\sum_j C_j$ fixed-parameter tractable in k (the number of resources)?

Parallel Machine Scheduling
with a Single Resource per Job

T. Janssen¹ C. Swennenhuis² A. Bitar³ T. Bosman⁴
S. Dauzère-Pérès⁵ D. Gijswijt¹ L. van Iersel¹ C. Yugma⁵

¹Delft Institute of Applied Mathematics, Delft University of Technology
²Department of Mathematics and Computer Science, Eindhoven University of Technology
³Decision Brain, Montpelleir
⁴Department of Econometrics and Operations Research, Vrije Universiteit Amsterdam
⁵Department of Manufacturing Sciences and Logistics, Center of Microelectronics in Provence

MAPSP, June 2019