Makespan Scheduling of Unit Jobs with Precedence Constraints in $O(1.995^n)$ time

Jesper Nederlof
Céline Swennenhuis
Karol Węgrzycki

UU TU/e Saarbrücken

Department of Mathematics and Computer Science, Eindhoven University of Technology
Given:

- \(n \) jobs of length 1
- \(m \) (identical, parallel) machines
- A precedence graph \(G \)
- \(T \in \mathbb{N} \)

Q: Is there a schedule of makespan \(T \)?

Problem:

\[P|prec, p_j = 1|C_{\text{max}} \]
\(P|\text{prec, } p_j = 1|C_{\text{max}} \)

- NP-complete
- For \(m = 2 \): polynomial time algorithms [FKN 1969, CG 1972, G 1982, GT 1985]
- For \(m \geq 3 \): complexity unknown! [Garey and Johnson 1961]

- XNLP-hard when parameterized by \(m \) \((+\text{width}(G))\) (i.e. W[t]-hard for all t) [BGNS 2021]
Definitions

Precendence Constraints Graph G

G ⇒ partial order:

- $i < j$ if $(i, j) \in G$

Definition: Let A be a set of jobs.

- $\text{pred}[A] = \{x \mid \exists a \in A \text{ s.t. } x \preceq a\}$
- $\text{succ}[A] = \{x \mid \exists a \in A \text{ s.t. } x \succeq a\}$
- $\text{comp}(A) = \{x \mid \exists a \in A \text{ s.t. } x \preceq a \text{ or } x \succeq a\}$
- $\text{sinks}(A) = \max\{A\}$

Let $A = \{c, d\}$, then:

- $\text{pred}[A] = \{a, c, d\}$
- $\text{succ}[A] = \{c, d, e, f\}$
- $\text{comp}(A) = \{a, c, d, e, f\}$
- $\text{sinks}(\{a, c, d\}) = \{c, d\}$
Definitions

Def: An *antichain* is a set A whose elements are pairwise incomparable.

Ex. of antichains in G

- $\checkmark \{b, c, d\}$
- $\checkmark \{b, c\}$
- $\checkmark \{d, f\}$

Corresponding $\text{pred}[A]$

- $\Rightarrow \{a, b, c, d\}$
- $\Rightarrow \{a, b, c\}$
- $\Rightarrow \{a, b, c, d, f\}$

No antichain:

- $\times \{b, f\}$
- $\times \{a, e\}$

Precendence Constraints Graph G
There is a one-to-one relation between:

- \(A = \) antichain of graph \(G \)
- \(\text{pred}[A] \)
- \(\text{sinks}(X) \)
- \(X = \) possible set of jobs to schedule

Def: An antichain is a set \(A \) whose elements are pairwise incomparable.
DP Algorithm:

\[T(A, t) = \begin{cases}
 \text{true,} & \text{if pred}[A] \text{ can be processed in } t \text{ time}, \\
 \text{false,} & \text{otherwise}.
\end{cases} \]

To compute \(T(A, t) \):
- try all \(\binom{n}{m} \) possible jobs at time \(t \)
- Runs in \(O^*(\#AC \cdot \binom{n}{m}) \) time
- \(\#AC \leq 2^n \) \(\Rightarrow O^*(2^n \cdot \binom{n}{m}) \) time algorithm
- No \(O^*(2^n) \) time algorithm known!

Makespan Scheduling of Unit Jobs with Precedence Constraints in \(O(1.995n) \) time
Our result:

\[P|\text{prec}, p_j = 1|C_{\text{max}} \] can be solved in \(O(1.995^n) \) time.

Proof: Combination of three algorithms
$P|\text{prec}, p_j = 1|C_{\max}$

- **DP Algorithm**
 - Dynamic Programming
 - $O^*\left(\#AC \cdot \binom{n}{m}\right)$ time

- **Fast Subset Convolution Algorithm**
 - Non-trivial application of Björklund, Husfeldt and Koivisto (SICOMP 2009)
 - $O^*(\#AC + 2^n - m)$ time

- **FPT Algorithm**
 - Parameterized by vertex cover of comparability graph
 - $O^*(169|C|)$ time

Fast enough when

$|C| \geq \frac{n}{7.5}$

⇒ largest antichain

$< \left(1 - \frac{1}{7.5}\right)n$

Dilworth’s Theorem

$\#AC \leq 1.94^n$

Fast enough when

$|C| < \frac{n}{7.5}$
What is vertex cover of comparability graph?

Let $G = (V, A)$ be input. Then $G^{\text{comp}} := (V, E)$ where $(v, w) \in E$ if v and w are comparable.

- G^{comp} is undirected transitive closure of G.

Let $C := \text{smallest vertex cover of } G^{\text{comp}}$

Claim: $V \setminus C$ is an antichain.
Zero-Adjusted Schedule (D&W)

Assumption: $n = m \cdot T$

Makespan Scheduling of Unit Jobs with Precedence Constraints in $O(1.995n)$ time
Zero-Adjusted Schedule (D&W)

Assumption: $n = m \cdot T$

$= \text{sink}(G)$

Let $z \in [1, T]$ be the first moment with a sink.

D&W: W.m.a. Each job x after z is a sink or a successor of a job at time z.

$\Rightarrow n^{O(m \cdot h)}$ time algorithm, $h = \mid\text{longest chain}\mid$
Sink-Adjusted Schedule

Assumption: $n = m \cdot T$

$= \text{sink}(G)$

$z \in [1, T]$ is a sink moment if there are both sinks and non-sinks at time z.

Makespan Scheduling of Unit Jobs with Precedence Constraints in $O(1.995n)$ time
Sink-Adjusted Schedule

Assumption: \(n = m \cdot T \)

\(= \text{sink}(G) \)

\(z \in [1, T] \) is a \textit{sink moment} if there are both sinks and non-sinks at time \(z \).
Sink-Adjusted Schedule

Assumption: \(n = m \cdot T \)

\[= \text{sink}(G) \]

\[z \in [1, T] \] is a sink moment if there are both sinks and non-sinks at time \(z \).
Sink-Adjusted Schedule

Assumption: $n = m \cdot T$

$V \setminus (\text{succ}[H_1] \cup \text{sinks})$

$z \in [1, T]$ is a sink moment if there are both sinks and non-sinks at time z.

No sinks in
Sink-Adjusted Schedule

How to use this...?

Claim: if we know $\bigcup_i H_i$, we can derive H_1, H_2, \ldots, H_l
Middle-Adjusted Schedule

Assumption: $n = m \cdot T$

<table>
<thead>
<tr>
<th>C^L</th>
<th>L</th>
<th>C^R</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{pred}[C^L]$</td>
<td></td>
<td>$\text{succ}[C^R]$</td>
</tr>
</tbody>
</table>

$|C^L| \approx \frac{|C|}{2}$

$|C^R| \approx \frac{|C|}{2}$
Middle-Adjusted Schedule

Assumption: $n = m \cdot T$

Undecided $U := V \setminus (\text{pred}[C^L] \cup \text{succ}[C^R])$

- U is antichain
- U are sinks in L
- U are sources in R
Middle-Adjusted Schedule

Assumption: $n = m \cdot T$

Undecided $U \equiv V \setminus (\text{pred}[C^L] \cup \text{succ}[C^R])$

- U is antichain
- U are sinks in L
Middle-Adjusted Schedule

Assumption: $n = m \cdot T$

- Assume sink-adjusted
- Guess jobs in H from C^L
- Reconstruct $H_1, H_2, ...$
- Find out which jobs from U can be processed at which slots

Undecided $U \equiv V \setminus (\text{pred}[C^L] \cup \text{succ}[C^R])$

- U is antichain
- U are sinks in L

Makespan Scheduling of Unit Jobs with Precedence Constraints in $O(1.995n)$ time
Middle-Adjusted Schedule

Assumption: \(n = m \cdot T \)

Undecided \(U \) := \(V \setminus (\text{pred}[C^L] \cup \text{succ}[C^R]) \)

- \(U \) is antichain
- \(U \) are sinks in \(L \)
- \(U \) are sources in \(R \)
Sink-Adjusted Schedule (D&W)

Makespan Scheduling of Unit Jobs with Precedence Constraints in $O(1.995n)$ time
Sink-Adjusted Schedule (D&W)

Makespan Scheduling of Unit Jobs with Precedence Constraints in $O(1.995^n)$ time
Middle-Adjusted Schedule

Assumption: $n = m \cdot T$

<table>
<thead>
<tr>
<th>Machines</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

$|C^L| \approx \frac{|C|}{2}$

Guesses: $2^{|C|} \cdot 2^{|C|} \Rightarrow O^*(16^{|C|})$ time. **Not the full story.**
Conclusion

Main result:

\[P|\text{prec}, p_j = 1|C_{\text{max}} \text{ in } O(1.995^n) \text{ time.} \]

Key idea’s:

- Tradeoff between \#AC’s and \(|C|\).
- \(O^*(169|C|)\) time algorithm

Future Research:

\[P3|\text{prec}, p_j = 1|C_{\text{max}} \text{ in } 2^{o(n)} \text{ time?} \]
Extra ideas for the general case

\[|C| \leq \frac{n}{7.5} \]

\[|C| > \frac{n}{7.5} \quad \text{Claim 5.7} \quad \#AC \leq O(1.9445^n) \]

\[\mathcal{O}^* \left(169|C| \right) \text{ algorithm (Theorem 1.2)} \]

\[m \leq \frac{n}{279} \]

\[m > \frac{n}{279} \]

\[\mathcal{O}^*(\#AC \cdot \binom{n}{m}) \text{ algorithm (Theorem 5.6)} \]

\[\mathcal{O}^*(\#AC + 2^{n-m}) \text{ algorithm (Theorem 5.5)} \]